NAVAL POSTGRADUATE SCHOOL Monterey, California

EC 3550 MIDTERM EXAM I 4/98 Prof. Powers

- This exam is open book and notes.
- There is a 50 minute time limit.
- There are three problems; each is equally weighted.
- Partial credit will be given; be sure to do some work on each problem.
- Be *sure* to include units in your answers.
- Please circle or underline your answers.
- \bullet Do NOT do any work on this sheet.
- Show ALL work.

1	
2	
3	
Total	

Name:		

- 1. An optical fiber loses 10% of its optical power after propagation through 1200 meters of a fiber. If the input power is 900 μ W, at what distance will the power in the fiber have fallen to 270 μ W?
- 2. We want to design a Raman amplifier to amplify a weak optical signal by 20 dB. The signal is at a wavelength of 850 nm. The fiber amplifier is 1.1 kilometer long, has a mode-field diameter of 8 μ m, and optical losses of 3.5 dB/km.
 - (a) What should the wavelength of the pump beam be?
 - (b) What should the power level of the pump beam be?
- 3. Consider a 62.5/125 graded-index, multimode fiber with a core index of 1.460, a fractional index-of-refraction difference of 1.5%, and an index profile parameter, g, of 1.9. It is to be used with a source with a wavelength of 850 nm and a $\Delta\lambda$ of 10 nm.
 - (a) Calculate the data rate-distance product for this link.
 - (b) Find the maximum bit rate that can be supported by this link for a distance of $5~\mathrm{km}$.